第一弹 - 资源福利版.apk
萌猫导航

Android UI性能优化 检测应用中的UI卡顿

作者: 小胖手 来源: 怪哈哈网 日期: 2017-06-19 10:44:49 人气: -

一、概述

在做app性能优化的时候,大家都希望能够写出丝滑的UI界面,以前写过一篇博客,主要是基于Google当时发布的性能优化典范,主要提供一些UI优化性能示例:

实际上,由于各种机型的配置不同、代码迭代历史悠久,代码中可能会存在很多在UI线程耗时的操作,所以我们希望有一套简单检测机制,帮助我们定位耗时发生的位置。

本篇博客主要描述如何检测应用在UI线程的卡顿,目前已经有两种比较典型方式来检测了:

  1. 利用UI线程Looper打印的日志
  2. 利用Choreographer

两种方式都有一些开源项目,例如:

其实编写本篇文章,主要是因为发现一个还比较有意思的方案,该方法的灵感来源于一篇给我微信投稿的文章:

该项目主要用于捕获UI线程的crash,当我看完该项目原理的时候,也可以用来作为检测卡段方案,可能还可以做一些别的事情。

所以,本文出现了3种检测UI卡顿的方案,3种方案原理都比较简单,接下来将逐个介绍。

二、利用loop()中打印的日志

(1)原理

大家都知道在Android UI线程中有个Looper,在其loop方法中会不断取出Message,调用其绑定的Handler在UI线程进行执行。

大致代码如下:

public static void loop() {    final Looper me = myLooper();    final MessageQueue queue = me.mQueue;    // ...
    for (;;) {
        Message msg = queue.next(); // might block
        // This must be in a local variable, in case a UI event sets the logger
        Printer logging = me.mLogging;        if (logging != null) {
            logging.println(">>>>> Dispatching to " + msg.target + " " +
                    msg.callback + ": " + msg.what);
        }        // focus
        msg.target.dispatchMessage(msg);        if (logging != null) {
            logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
        }        // ...
        }
        msg.recycleUnchecked();
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25

所以很多时候,我们只要有办法检测:

msg.target.dispatchMessage(msg);

此行代码的执行时间,就能够检测到部分UI线程是否有耗时操作了。可以看到在执行此代码前后,如果设置了logging,会分别打印出>>>>> Dispatching to<<<<< Finished to这样的log。

我们可以通过计算两次log之间的时间差值,大致代码如下:

public class BlockDetectByPrinter {

    public static void start() {

        Looper.getMainLooper().setMessageLogging(new Printer() {            private static final String START = ">>>>> Dispatching";            private static final String END = "<<<<< Finished";            @Override
            public void println(String x) {                if (x.startsWith(START)) {
                    LogMonitor.getInstance().startMonitor();
                }                if (x.startsWith(END)) {
                    LogMonitor.getInstance().removeMonitor();
                }
            }
        });

    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

假设我们的阈值是1000ms,当我在匹配到>>>>> Dispatching时,我会在1000ms毫秒后执行一个任务(打印出UI线程的堆栈信息,会在非UI线程中进行);正常情况下,肯定是低于1000ms执行完成的,所以当我匹配到<<<<< Finished,会移除该任务。

大概代码如下:

public class LogMonitor {

    private static LogMonitor sInstance = new LogMonitor();    private HandlerThread mLogThread = new HandlerThread("log");    private Handler mIoHandler;    private static final long TIME_BLOCK = 1000L;    private LogMonitor() {
        mLogThread.start();
        mIoHandler = new Handler(mLogThread.getLooper());
    }    private static Runnable mLogRunnable = new Runnable() {        @Override
        public void run() {
            StringBuilder sb = new StringBuilder();
            StackTraceElement[] stackTrace = Looper.getMainLooper().getThread().getStackTrace();            for (StackTraceElement s : stackTrace) {
                sb.append(s.toString() + "\n");
            }
            Log.e("TAG", sb.toString());
        }
    };    public static LogMonitor getInstance() {        return sInstance;
    }    public boolean isMonitor() {        return mIoHandler.hasCallbacks(mLogRunnable);
    }    public void startMonitor() {
        mIoHandler.postDelayed(mLogRunnable, TIME_BLOCK);
    }    public void removeMonitor() {
        mIoHandler.removeCallbacks(mLogRunnable);
    }

}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41

我们利用了HandlerThread这个类,同样利用了Looper机制,只不过在非UI线程中,如果执行耗时达到我们设置的阈值,则会执行mLogRunnable,打印出UI线程当前的堆栈信息;如果你阈值时间之内完成,则会remove掉该runnable。

(2)测试

用法很简单,在Application的onCreate中调用:

BlockDetectByPrinter.start();
  • 1
  • 1

即可。

然后我们在Activity里面,点击一个按钮,让睡眠2s,测试下:

findViewById(R.id.id_btn02)
    .setOnClickListener(new View.OnClickListener() {        @Override
        public void onClick(View v) {            try {
                Thread.sleep(2000);
            } catch (InterruptedException e) {
            }
        }
    });
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

运行点击时,会打印出log:

02-21 00:26:26.408 2999-3014/com.zhy.testlp E/TAG: 
java.lang.VMThread.sleep(Native Method)
   java.lang.Thread.sleep(Thread.java:1013)
   java.lang.Thread.sleep(Thread.java:995)   com.zhy.testlp.MainActivity$2.onClick(MainActivity.java:70)
   android.view.View.performClick(View.java:4438)
   android.view.View$PerformClick.run(View.java:18422)
   android.os.Handler.handleCallback(Handler.java:733)
   android.os.Handler.dispatchMessage(Handler.java:95)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

会打印出耗时相关代码的信息,然后可以通过该log定位到耗时的地方。

三、 利用Choreographer

Android系统每隔16ms发出VSYNC信号,触发对UI进行渲染。SDK中包含了一个相关类,以及相关回调。理论上来说两次回调的时间周期应该在16ms,如果超过了16ms我们则认为发生了卡顿,我们主要就是利用两次回调间的时间周期来判断:

大致代码如下:

public class BlockDetectByChoreographer {    public static void start() {
        Choreographer.getInstance()
            .postFrameCallback(new Choreographer.FrameCallback() {
                @Override                public void doFrame(long l) {                    if (LogMonitor.getInstance().isMonitor()) {
                        LogMonitor.getInstance().removeMonitor();                    
                    } 
                    LogMonitor.getInstance().startMonitor();
                    Choreographer.getInstance().postFrameCallback(this);
                }
        });
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

第一次的时候开始检测,如果大于阈值则输出相关堆栈信息,否则则移除。

使用方式和上述一致。

四、 利用Looper机制

先看一段代码:

new Handler(Looper.getMainLooper())
        .post(new Runnable() {            @Override
            public void run() {}
       }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 1
  • 2
  • 3
  • 4
  • 5

该代码在UI线程中的MessageQueue中插入一个Message,最终会在loop()方法中取出并执行。

假设,我在run方法中,拿到MessageQueue,自己执行原本的Looper.loop()方法逻辑,那么后续的UI线程的Message就会将直接让我们处理,这样我们就可以做一些事情:

public class BlockDetectByLooper {
    private static final String FIELD_mQueue = "mQueue";    private static final String METHOD_next = "next";    public static void start() {        new Handler(Looper.getMainLooper()).post(new Runnable() {            @Override
            public void run() {                try {
                    Looper mainLooper = Looper.getMainLooper();                    final Looper me = mainLooper;                    final MessageQueue queue;
                    Field fieldQueue = me.getClass().getDeclaredField(FIELD_mQueue);
                    fieldQueue.setAccessible(true);
                    queue = (MessageQueue) fieldQueue.get(me);
                    Method methodNext = queue.getClass().getDeclaredMethod(METHOD_next);
                    methodNext.setAccessible(true);
                    Binder.clearCallingIdentity();                    for (; ; ) {
                        Message msg = (Message) methodNext.invoke(queue);                        if (msg == null) {                            return;
                        }
                        LogMonitor.getInstance().startMonitor();
                        msg.getTarget().dispatchMessage(msg);
                        msg.recycle();
                        LogMonitor.getInstance().removeMonitor();
                    }
                } catch (Exception e) {
                    e.printStackTrace();
                }

            }
        });
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37

其实很简单,将Looper.loop里面本身的代码直接copy来了这里。当这个消息被处理后,后续的消息都将会在这里进行处理。

中间有变量和方法需要反射来调用,不过不影响查看msg.getTarget().dispatchMessage(msg);执行时间,但是就不要在线上使用这种方式了。

不过该方式和以上两个方案对比,并无优势,不过这个思路挺有意思的。

使用方式和上述一致。

最后,可以考虑将卡顿日志输出到文件,慢慢分析;可以结合上述原理以及自己需求开发做一个合适的方案,也可以参考已有开源方案。

参考


转载请注明文章来源(欢迎分享): http://www.guaihaha.com/android/16222.html

怪哈哈动漫图库
关于怪哈哈
怪哈哈是一个集搞笑,美女,动漫,游戏,技术等为核心的综合性网站!
联系我们
商务洽谈、广告合作、友情链接、侵权举报,这些都可以联系我们哦!
关于我们 - 联系我们 - 广告服务 - 免责申明   
本站文字和图片均为严格审查筛选收藏,均收集整理于互联网,其著作权归原作者所有,如果有侵犯您权利的照片,请来信告知,我们将及时撤销相应文字和图片.
Copyright @2014-2020 怪哈哈网 All Rights Reserved.
【谢谢大家一直支持贵站】